
The Asterisk
Handbook
Version 2

Mark Spencer
Mack Allison

Christopher Rhodes
The Asterisk Documentation Team

Last Edit Date: 3/30/03

The Asterisk Handbook

The Asterisk Handbook
Version 2

About this book

Authors:

Mark Spencer
Mack Allison
Christopher Rhodes
The Asterisk Documentation Team

Special thanks to all the users, contributers, and developers who have
made Asterisk a reality.

Copyright © 2003 Digium, Inc. All rights reserved. This document
may not be duplicated, copied, or redistributed in any form,
electronic or physical, without the prior written consent of Digium,
Inc.

The latest version of this document may be downloaded for free from
http://www.digium.com.

This book was created using OpenOffice, available at
http://www.openoffice.org.

Page 2

The Asterisk Handbook

���������
	����
	������������

1. Chapter 1: Introduction..5
1.1 What is Asterisk?...5
1.2 Obtaining Asterisk...6
1.3 Licensing..6
1.4 Supported Technologies..7

1.4.1 Zaptel Pseudo TDM interfaces..7
1.4.2 Non-Zaptel hardware interfaces..8
1.4.3 Packet voice protocols...8

1.5 Contributing...8
1.5.1 Code Contributions..9
1.5.2 Documentation Contributions...9
1.5.3 Asterisk IRC Channel and Mailing List...........................10
1.5.4 Supporting Asterisk Sponsors...10
1.5.5 Core Developer Wishlists..10

2. Chapter 2: Asterisk's Architecture...11
2.1 Asterisk Architecture Overview..11
2.2 Detailed Asterisk Architecture..11
2.3 Network Examples...12

2.3.1 The Mythical 1x1 PBX..12
2.3.2 An 8x16 Small Office PBX...13
2.3.3 SME with Remote Offices...14
2.3.4 High Density IVR and Conferencing................................14

2.4 Filesystem Organization..15
2.5 Naming Channels...17

2.5.1 Zap: Zaptel TDM Channels...18
2.5.2 SIP: Session Initiation Protocol Channels........................19
2.5.3 IAX: Inter-Asterisk eXchange Channels..........................19

3. Chapter 3: Running Asterisk...21
3.1 Asterisk Command Line Arguments..21
3.2 Asterisk Command Line Interface..23

4. Chapter 4: The Asterisk Dialplan..25
4.1 Introduction to Extension Contexts..25

Page 3

The Asterisk Handbook

4.1.1 Extension Contexts Uses...25
4.1.2 Basic Extension Context..26
4.1.3 Sample Voice Menu...26
4.1.4 Pattern Matching..27
4.1.5 Context Inclusion...28

4.2 Complete Set of Contexts..29
4.3 Defining Extensions...30

4.3.1 Basic Extension Example..30
4.3.2 Dialing a Phone..31
4.3.3 Routing by Caller ID...31
4.3.4 Ringing Phones in Sequence...32
4.3.5 Basic Voice Menu..33
4.3.6 Using Variables..33
4.3.7 Including Contexts...34
4.3.8 Daytime/Nighttime Modes..35
4.3.9 Outbound Dialing...36
4.3.10 Failover Trunking and LCR..37
4.3.11 Using Macros...38

5. Chapter 5: Configuration Files..40
5.1 Introduction to Config Files..40
5.2 Configuration File Grammars...40

5.2.1 Simple Groups..41
5.2.2 Inherited Option Object (e.g. zapata.conf).......................42
5.2.3 Complex Entity Object (iax.conf).....................................43

5.3 Channel Interfaces...43
5.3.1 zapata.conf..43
5.3.2 sip.conf...56
5.3.3 iax.conf...60

5.4 Application Configurations...68
5.4.1 voicemail.conf..68

Page 4

The Asterisk Handbook Chapter 1: Introduction

������������� �"! #%$��&�('*),+.-/�10�'�$

243527698;:;<>=@? A ?;<%BDCE=@?GF�H

fficially, Asterisk is an Open Source hybrid TDM and
packet voice PBX and IVR platform with ACD
functionality. Unofficially, Asterisk is quite possibly the

most powerful, flexible, and extensible piece of integrated
telecommunications software available. Its name comes from the
asterisk symbol, *, which in UNIX (including Linux) and DOS
environments represents a wildcard, matching any filename.
Similarly, Asterisk the PBX is designed to interface any piece of
telephony hardware or software with any telephony application,
seamlessly and consistently.

O

Traditionally, telephony products are designed to meet a specific
technical need in a network. However, many applications of using
telephony share a great deal of technology. Asterisk takes advantage
of this synergy to create a single environment that can be molded to
fit any particular application, or collection of applications, as the user
sees fit.

Asterisk can, among other things, be used in any of these
applications:

Heterogeneous Voice over IP gateway (MGCP, SIP, IAX, H.323)
Private Branch eXchange (PBX)
Custom Interactive Voice Response (IVR) server
Softswitch
Conferencing server
Number translation
Calling card application
Predictive dialer
Call queuing with remote agents
Remote offices for existing PBX

Page 5

The Asterisk Handbook Chapter 1: Introduction

Perhaps more importantly, it can fill all of those roles simultaneously
and seamlessly between interfaces.

I4JLK7M�NPORQTSRUVS�UTW�X YVO[ZD\]S^Y>_

Released versions of Asterisk can be freely downloaded from
ftp://ftp.asterisk.org via anonymous FTP. The preferred method of
accessing Asterisk for most installations is via the anonymous
repository located at cvs.digium.com, with the CVSROOT of
:pserver:anoncvs@cvs.digium.com. For more information, see
Downloading and Installing.

I4J�`ba;SRcTZDU;YTSRUTW

Asterisk is generally distributed under the terms of the GNU General
Public License, or GPL. This license permits you to freely distribute
Asterisk in source and binary forms, with or without modifications,
provided that when it is distributed to anyone at all, it is distributed
with source code (including any changes you make) and without any
further restrictions on their ability to use or distribute the code. For
more information, refer to the GNU General Public License, included
as an appendix.

The GPL does not extend to the hardware or software that Asterisk
talks to. For example, if you are using a SIP soft phone as a client for
Asterisk, it is not a requirement that that program also be distributed
under GPL. Additionally, AGI applications, which are simply
launched by Asterisk and communicate

For those applications in which the GNU GPL is not appropriate
(because of some sort of proprietary linkage, for example), Digium is
the solely capable of licensing Asterisk outside of the terms of the
GPL at their discression. For more information on licensing Asterisk
outside of GPL, contact sales@digium.com.

Page 6

The Asterisk Handbook Chapter 1: Introduction

d4e^fhg�ikjlj.mVnpo[qkrtskqkuDvlwxmzy{mD|�}5q�~

Asterisk is designed to allow new interfaces and technologies to be
added easily. Its lofty goal is to support every kind of telephony
technology possible. The latest hardware and protocol compatibility
list can be found at http://www.digium.com or
http://www.asterisk.org. In general, interfaces are divided into three
categories, Zaptel hardware, non-Zaptel hardware, and packet voice:

�����������l�����5�>���P���z���k������� �����5�;�@�5�k ��>�

These interfaces provide integration with traditional and legacy
digital and analog telephone interfaces (including connection to the
public phone network itself). In addition, Zaptel compatible
interfaces support Pseudo-TDM switching between them, to keep
latency nearly nonexistent on strictly TDM calls, conferences, etc.
Zaptel interfaces are available from Digium (http://www.digium.com)
for a variety of network interfaces including PSTN, POTS, T1, E1,
PRI, PRA, E&M, Wink, and Feature Group D interfaces among
others. Among the hardware available at the time of writing:

T100P - Single span T1 or PRI connection (mixed data/voice
permitted)
E100P – Single span E1 or PRA connection (mixed data/voice
permitted)
T400P – Quad span T1 or PRI connection (mixed data/voice
permitted)
E400P – Quad span E1 or PRA connection (mixed data/voice
permitted)
X100P – Single analog PSTN connection
S100U – Single analog POTS connection (USB)
S400P – Single to Quad analog POTS connection (PCI)

Note that for technical reasons, you must have at least one Zaptel
interface (of any kind) installed in your Asterisk system if you wish
to use conferencing.

Page 7

The Asterisk Handbook Chapter 1: Introduction

¡�¢�£�¢¥¤§¦©¨;ª¬«®­l¯z°²±�³>´¬µ�¯�¶5·¬¸¹¯�¶{³§º�ª�±5³;¶@»5¯k¼�³>½

These interfaces provide connectivity to the traditional and legacy
telephone services, but do not support Pseudo-TDM switching. These
include:

ISDN4Linux – Basic Rate ISDN interface for Linux
OSS/Alsa – Sound card interfaces
Linux Telephony Interface (LTI) – Quicknet Internet
Phonejack/Linejack
Dialogic hardware1 – Full-duplex Intel/Dialogic hardware

¡�¢�£�¢@¾À¿/¯D¼ÂÁÃ³�±TÄ�¨�ºÅ¼�³�°k¶5¨�±�¨k¼Æ¨>´�½

These are standard protocols for communication over packet (IP and
Frame Relay) networks and are the only interfaces that do not require
specialized hardware of some kind.

Session Initiation Protocol (SIP)
Inter-Asterisk eXchange (IAX) versions 1 and 2
Media Gateway Control Protocol (MGCP)
ITU H.3232

Voice over Frame Relay (VOFR)

Ç4È5ÉbÊ�Ë;ÌPÍ�ÎEÏRÐxÑxÍ{ÏRÌTÒ

Although Asterisk is primarily the work of Digium, its main
corporate sponsor, like many Open Source projects, Asterisk grows
thanks greatly to contributions, both big and small, from countless
individuals. Contributing to Asterisk can be done in many ways:

1 Dialogic hardware is not supported by standard Asterisk but is available as a
pay-for add-on for customers with Intel/Dialogic hardware.

2 At the time of writing, H.323 support is freely available as an add-on for
Asterisk from third parties

Page 8

The Asterisk Handbook Chapter 1: Introduction

Ó�Ô@ÕTÔ�Ó×Ö�ØTÙkÚÛÖ*ØzÜ²ÝßÞ[à�ákâ�ÝãàäØ;Ü4å

If you are a developer, you can contribute to the Asterisk codebase
through bug fixes, feature enhancements, and new applications and
channel drivers. Contributions are typically made as patches against
current CVS, and should be submitted in “unified diff” format, which
you can generate by executing:

cvs diff -u > mypatch.diff

The resulting file (mypatch.diff in the above example) should then be
e-mailed to the author (markster@digium.com). Before any patches
can be merged with standard Asterisk, the author of the patch is must
submit a copyright disclaimer which gives Digium (Asterisk's
copyright holder) unlimited rights to use the patch. Two versions of
the disclaimer are included at the end of this document. Either
version may be used (whichever the patch author is more comfortable
with). After being filled out and signed, the document should be
faxed (and preferably mailed) to Digium. Contact information is
available at http://www.digium.com.

Ó�Ô@ÕTÔ¥æ§ç©ØTè�âGéêÚzÜ²Ý[ë¬ÝãàÅØzÜìÖ*ØzÜ²ÝßÞ[à�ákâ�ÝãàÅØzÜ4å

Even if you are not a developer, you can contribute to Asterisk in an
extremely important way by converting your experience in getting to
use Asterisk into a document which can accelerate someone else's
entry into the software. Documents can include entries for The
Asterisk Handbook (commonly referred to as simply “the book”),
application notes for using Asterisk in a specific environment or for a
specific use (known as “App Notes”), or in documenting Asterisk's
programming API.

Page 9

The Asterisk Handbook Chapter 1: Introduction

í�î@ïTî@ð�ñ*ò&ó�ôzõ[ö�ò�÷ùø@ú�ûüû�ý�þ�ÿTÿ¬ô���þzÿ����êþGö�� ö�ÿ��
	Âö�ò&ó

One important way to contribute is by assisting in programming
discussions, and providing technical support for other Asterisk users
on the Asterisk IRC channel, or on the Asterisk mailing list. The
Asterisk IRC channel is called (not surprisingly) “#asterisk” and is
available on irc.freenode.net. More information on the Asterisk
mailing list is available at http://lists. digium .com .

í�î@ïTî���
��������zõ^óãö�ÿ��êñ*òÃó5ô;õ[ö�ò¬÷�
����zÿ4ò��zõ[ò

Shameless plug as it may be, when you purchase hardware, support or
development from Digium, Asterisk's primary corporate sponsor, you
directly benefit the advancement of Asterisk.

í�î@ïTî@ïêû��;õ{ô���ô��4ô�������ôzõ�� ö�ò�ý�� ö�ò&ó%ò

Several independent core Asterisk developers have “wishlists” at
companies such as Amazon, ThinkGeek, and others. Sponsoring
their wishlists is one way to encourage them to continue their
contributions and participation in Asterisk development.

Page 10

The Asterisk Handbook Chapter 2: Asterisk's Architecture

!#"%$'&)(�*,+,- .0/1&2(3*546/#7 89/:.;*)<%!34=&2(><?&5@A*2(

the dialplan, using the Application Launcher for ringing phones,
connecting to voicemail, dialing out outbound trunks, etc. The core
also provides a standard Scheduler and I/O Manager that applications

Page 11

The Asterisk Handbook Chapter 2: Asterisk's Architecture

and drivers can take
advantage of. Asterisk's
Codec Translator
permits channels which

One question that is often heard is “How small of a PBX can you
build with Asterisk?”. Well, you can make a PBX as small as one
port of PSTN and one port of analog or IP phone. Yes, it is true that
you can make a PBX with just one port, but it isn't very useful unless

Page 12

The Asterisk Handbook Chapter 2: Asterisk's Architecture

you just enjoy leaving yourself voicemail or talking to an
autoattendant. In the above diagram an analog phone could be
connected directly to PC running Asterisk, and in turn either to an IP
phone over ethernet, or to an analog phone over an S100U USB to

your friends jealous.

Page 13

The Asterisk Handbook Chapter 2: Asterisk's Architecture

B�C=D�C=DFE%GIH�JLKNMPORQ�SUTWVXM9SRY[Z=Z\K�]^S�_

Page 14

The Asterisk Handbook Chapter 2: Asterisk's Architecture

`�acbedUf=g9h�i�j�iUk\h�l m[npo>q�r1ftsuqUk9fwvUr

Asterisk's organization is designed to follow Linux tradition, and is
grouped into several directories.

x\y�z6{|x\}�~^z�y��P��~X�

The /etc/asterisk directory contains all of Asterisk's configuration
files. For more information on configuration files, see the
configuration section of this document.

�������t�P�X���c�

The system binary directory /usr/sbin contains actual Asterisk
executables and scripts, including asterisk, astman, astgenkey and
safe_asterisk.

�������t�����c���\���^�����P���X�

Contains binary objects related to Asterisk which are architecture
specific.

�������t�����c���\���^ �¡��P���X¢£�¥¤W¦�§��¨�©¡��

Contains runtime modules for applications, channel drivers, codecs,
file format drivers, etc.

ª�«�¬�­tª�®t¯X°�±�«�²¨³|ª\´�¬^µ6³�­P®�¬X¶

Contains header files required for building asterisk applications,
channel drivers, and other loadable modules.

·9¸�¹�ºt·�»�¼c½�·\¹�¾^¿�À�ºP¼�¾XÁ

Contains variable data used by Asterisk in its normal operation.

Â9Ã�Ä�ÅtÂ�Æ�ÇcÈ�Â\Ä�É^Ê�Ë�ÅPÇ�ÉXÌ£Â\Ä�Í�Ç©ÎPÈ�ÇcÏ

Location of AGI scripts to be used by the AGI application in the
dialplan.

Page 15

The Asterisk Handbook Chapter 2: Asterisk's Architecture

Ð9Ñ�Ò�ÓtÐ�Ô�ÕcÖ�Ð\Ò�×^Ø�Ù�ÓPÕ�×XÚ£Ð\Ò�×^Ø�ÛUÖ

Asterisk database, roughly the Asterisk equivalent of the “Windows
Registry.” This file is never used directly, but its contents can be
displayed and modified at the Asterisk command line with the
“database” set of functions.

Ü9Ý�Þ�ßtÜ�à�ácâ�Ü\Þ�ã^ä�å�ßPá�ãXæ£Ü�ácçWÞ�è�å�ã

Storage area for images referenced in dialplan and applications.

é9ê�ë�ìté�í�îcï�é\ë�ð^ñ�ò�ìPî�ðXó£é¥óôò^õ�ð

Storage area for public and private keys used for RSA authentication
within Asterisk (especially IAX).

ö9÷�ø�ùtö�ú�ûcü�ö\ø�ý^þ�ÿ�ùPû�ý��£ö��������
	��

Storage area for MP3 music on hold. Should contain any mp3's you
want to be available for musiconhold. Note that musiconhold must
still be configured in /etc/asterisk/musiconhold.conf.

��
�������������������� ���!����"#�!��$&%('�)*�

Storage area for audio files, prompts, etc. used by Asterisk
applications. Some prompts are further organized as subdirectories
under the /var/lib/asterisk/sounds directory.

+�,�-�.�+/.!0(1

Asterisk stores runtime named pipes and PID files in the system
standard /var/run directory

2�3�4�5�2/5!6(7�2�4�8�9;:�5�<�8�=?>A@�<CB

Contains the primary process identifier (PID) of the running Asterisk
process.

Page 16

The Asterisk Handbook Chapter 2: Asterisk's Architecture

D�E�F�G�D/G!H(I�D�F�J�K;L�G�M�J�N?OCPQKSR

A named pipe used by Asterisk for enabling the “remote mode” of
operation.

T�U�V�W�T!X�Y�Z�Z&[T�V�X�\;]�W!^�X�_

Used for runtime spooled files of voicemail, outgoing calls, etc.

`�a�b�c�`!d�e�f�f&g `�b�d�h;i�c!j�d�k#`�f&l�h m�f&j�nom

Monitored by Asterisk for outbound calls. When a file is created in
/var/spool/asterisk/outgoing, Asterisk parses the file and attempts an
outbound call which is then dumped into the PBX if it is answered.
For more information see the section “Outbound Calls”

p�q�r�s�p!t�u�v�v&w p�r�t�x;y�s!z�t�{#p}|�~Qrow�w

Used for the now deprecated qcall application. Do not use.

���������!�������&� �������;���!�����#���(�

Storage of voicemail boxes, announcements, and folders

�*�������������������&���������A

Understanding Asterisk channel naming convention is critical to
using it effectively. Outgoing channel names (used, for example,
with the Dial application) are named in the format:

<technology>/<dialstring>

The <technology> parameter represents which sort of interface one is
trying to create or reference (e.g. SIP, Zap, MGCP, IAX, etc). The
<dialstring> is a driver-specific string representing the destination
desired. This section describes the naming convention for each
channel type.

Page 17

The Asterisk Handbook Chapter 2: Asterisk's Architecture

¡£¢A¤�¢;¥§¦�¨*©(ª«¦�¨*©­¬;®(¯±°³²µ´ ¶¸·�¨*¹º¹»®(¯½¼

Outgoing:
The basic formats of a Zap channel name are:

Zap/[g]<identifier>[c][r<cadence>]

Where <identifier> is a numerical identifier for the physical channel
number of the desired channel. If the identifier is prefixed by the
letter g, then the number is interpreted as a group number instead of
as a channel (See Zapata.conf). The identifier may be followed by
one or more options. If the letter r and a number follow, that number
is used as a “distinctive ring” for this dial command (valid numbers
are 1-4). If the letter c follows, then “Answer Confirmation” is
requested, in which the call is not considered answered until the
called user presses '#'.

Zap/1 – TDM Channel 1
Zap/g1 – First available channel in group 1
Zap/3r2 – TDM Channel 3 with 2nd distinctive ring
Zap/g2c – First available channel in group 2 with confirmation

Incoming:
Incoming Zap channels are labeled simply:

Zap/<channel>-<instance>

Where <channel> is the channel number and <instance> is a number
from 1 to 3 representing which of up to 3 logical channels associated
with a single physical channel this is.

Zap/1-1 – First call appearance on TDM channel 1
Zap/3-2 – Second call appears on TDM channel 3

Page 18

The Asterisk Handbook Chapter 2: Asterisk's Architecture

¾£¿AÀ�¿Á¾ÃÂ�Ä�ÅÇÆ»ÂÉÈ�Ê?Ê?ËÍÌ£ÎÏÄ�Î�ËÑÐ}ËÓÒQÐ}ËÍÌ£ÎÔÅÖÕ×Ì»Ð;ÌºØ?Ì(Ù�Ú¸Û�Ò*Î�ÎQÈ(Ù½Ê

Outgoing:
Outgoing channels typically take the form:

 SIP/[<exten>@]<peer>[:<portno>]

Where <peer> is the name of the peer (or hostname/IP of the remote
server), <portno> is an optional port number (the default is the SIP
standard port 5060), and <exten> is an optional extension.

SIP/ipphone – SIP peer “ipphone”
SIP/8500@sip.com:5060 – Extension 8500 at sip.com, port 5060

Incoming:
Incoming SIP channels are of the form:

SIP/<peer>-<id>

Where <peer> is the identified peer and <id> is a random identifier
to be able to uniquely identify multiple calls from a single peer.

SIP/192.168.0.1-01fb34d6 – A SIP call from 192.168.0.1
SIP/sipphone-45ed721c – A SIP call from peer “sipphone”

Ü£ÝAÞ�ÝAßÃàâáäãæåºà�ç�è�é&ê×ë;áíìîè�é&ê ï½ì»ð¸é»ã�ñ�ò�ó*ç�ôoéÏõæò»ó*ç�çQé(ö½ì

Outgoing
Outgoing IAX channels take the form:

Page 19

The Asterisk Handbook Chapter 2: Asterisk's Architecture

IAX/[<user>[:<secret>]@]<peer>[:<portno>][/<exten>[@<context>][
/<options>]]

Where <user> and <secret> are optional username and secret to use
to connect to the host identified by <peer> and an optional port
number <portno>, optionally requesting a specific extension
<exten> at an optional context <context>, and optionally with
<options> connection options, of which only “a” is currently defined
for “request autoanswer.”

IAX/mark:asdf@myserver/6275@default – Call to “myserver”
using “mark” as username and “asdf” as
password, and requesting extension 6275 in
default context

IAX/iaxphone/s/a – Call to “iaxphone” requesting immediate answer.

IAX/guest@misery.digium.com – Call Digium

Incoming:
Incoming IAX channels are of the form:

IAX[[<username>@]<host>]/<callno>

Where <username> is the username, if known, <host> is the
apparent host connecting, and <callno> is the local call number.

IAX[mark@192.168.0.1]/14 – Call number 14 from user “mark” at
192.168.0.1

IAX[192.168.10.1]/13 – Call 13 from 192.168.10.1

Page 20

The Asterisk Handbook Chapter 3: Running Asterisk

÷ùøÖúüûþý ÿ ����� ���
	�	
��	������ ý ÿ �������
Running Asterisk is actually rather straight forward. Asterisk, if run
with no arguments, is launched as a daemon process. Often, it is
useful to execute Asterisk in a verbose, console mode, providing you
with useful debugging and state information, as well as access to the
powerful Asterisk command line interface.

�������! #"%$'&)(* ,+.-
/#01032547618#(94:$��;&�<�=#0�$>4?"@
Like most Linux applications, Asterisk has several command line
options. These are tpyically preceeded by a “-”, and several options
may be specified in a row after a single “-”. For example:

asterisk -vvvgc

The above example is probably the most commonly used asterisk
command line.

ACB
Enables console mode. If console mode is enabled, Asterisk will
provide a command line that can be used to issue commands and
view the state of the system. Implies -f as well

D�E�FHGJI�K5LNMPO7L�MRQ9SUT
Executes Asterisk with a different configuration file.

V�W
Enables extra debugging across all modules.

X�Y
Prevents Asterisk from daemonizing into the background.

Page 21

The Asterisk Handbook Chapter 3: Running Asterisk

Z�[
Forces Asterisk to dump core in the unlikely event of a segmentation
violation.

\^]
Displays basic command line help.

_a`
Forces Asterisk to prompt for cryptographic initialization passcodes
at startup.

b^c
Disables ANSI color support.

d^e
Run with a real-time priority.

f�g
Run in quiet mode.

hji
Connects to an already running instance of Asterisk.

k@l
Causes asterisk to produce more verbose output. More -v's mean
more verbose.

mNn;o5pJq�rsr�tvu5w�x
Executes a command in Asterisk (when combined with -r)

Page 22

The Asterisk Handbook Chapter 3: Running Asterisk

y�zR{}|!~#�%�'�)�*~,�.�
�#�1�3�5�7�1�#�9�:�;�N�?�������C�5�,�
The Asterisk command line is one of the most powerful interfaces for
obtaining status on a running Asterisk. Although a complete
description of all options is beyond the scope of this document, a
brief introduction is certainly in order. When running Asterisk with
the -r or -c flag, the user is provided with the Asterisk CLI prompt,
which looks, unimpressively, like this:

*CLI>

or

localhost*CLI>

In any case, once you are at the command line, you enter instructions
by typing them in and pressing enter. The Asterisk CLI includes
command completion, available by pressing the tab key. The most
obvious, and useful, command is help, which will show you a list of
all the Asterisk CLI commands you can enter:

*CLI> help
 add extension Add new extension into context
.
.
.
 zap show channel Show information on a channel
*CLI>

Page 23

The Asterisk Handbook Chapter 3: Running Asterisk

For more information about a specific command, you can type help
<command>. For example:

*CLI> help soft hangup
Usage: soft hangup <channel>
 Request that a channel be hung up. The
 hangup takes effect the next time the
 driver reads or writes from the channel
*CLI>

This shows you that the soft hangup command takes an argument (a
channel name) and that it requests the channel be hungup. This
command can be used, for example, to hangup any active call in the
system.

A few more extremely useful commands:

iax debug: Enable IAX debugging
mgcp debug: Enable MGCP debugging
reload: Reload configuration files
restart when convenient: Restarts Asterisk when all calls are gone
show agi: Displays AGI commands
show applications: Shows all Asterisk apps
show application <app>: Shows usage of a specific Asterik app
show channels: Shows all active channels
show channel <channel>: Shows information on a specific channel
sip debug: Enable SIP debugging
stop now: Stops Asterisk immediately

Page 24

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

����������������� ����� � �¡�¢�
�¤£C��¥ ¦�£@��§��
§@�©¨

he most important part of understanding Asterisk is
understanding its dialplan. It is the dialplan which routes
every call in the system from its source through various

applications, to its final destination. Everything from voicemail, to
conferencing, to autoattendant voice menus is done through a
consistent concept and logic.

T
ª¡«�¬®­@¯,°²±j³¡´?µ·¶�°¹¸R³º¯»°a³½¼¿¾À°aÁ#¯#ÂÀ¸R³?¯ÄÃÅ³º¯,°^Á>¾À°¹Â
Æ7ÇCÈHÇCÈ®ÉËÊÍÌCÎËÏvÐÒÑÔÓËÏ�Õ
ÓËÏÍÌ�ÎvÊÍÌ%Ð;Ö�ÐUÎ,Ð
The dialplan is composed of one or more extension contexts. Each
extension context is itself simply a collection of extensions. Each
extension context in a dialplan has a unique name associated with it.
The use of contexts can be used to implement a number of important
features including:

Security – Permit long distance calls from certain phones only
Routing – Route calls based on extension
Autoattendant – Greet callers and ask them to enter extensions
Multilevel menus – Menus for sales, support, etc.
Authentication – Ask for passwords for certain extensions
Callback – Reduce long distance changes
Privacy – Blacklist annoying callers from contacting you
PBX Multihosting – Yes, you can have “virtual hosts” on your PBX
Daytime/Nighttime – You can vary behavior after hours
Macros – Create scripts for commonly used functions

The goal of this chapter is to familiarize you with the concepts behind
the dialplan, show some examples, and empower you with the
knowledge you need to perform neat tricks and impress friends,
coworkers, and competitors with your Asterisk-foo like a pro.

Page 25

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

×7ØCÙHØÛÚÄÜÞÝÀßÒàâáäã·åçæ�è#évßÒàÔêËé�ë
êËéUæCèHåçæ
An example extension context might look something like this:

default

Extension Description

101 Mark Spencer

102 Wil Meadows

103 Greg Vance

104 Check voicemail

105 Conference Room

0 Operator

In this example context (called “default”), the first three extensions
(101 to 103) all would be associated with ringing phones belonging to
various employees. The fourth extension (104) would be associated
with allowing someone to check their voicemail. The fifth extension
(105) would be associated with a conference room. Finally, the “0”
extension would be associated with the operator.

ì7íCîHí*ï;ð�ñ·òäó>ôÔõ�ö�÷5øÔùçõ3ú}õËû'ü
Another example extension context might look like this:

mainmenu

Extension Description

s Welcome message and instructions

1 Sales

2 Support

3 Accounting

9 Directory

Hangup

Page 26

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

This example, called “mainmenu” has only single digit extensions.
The “s” extension is the start extension, where the caller begins. This
extension would play a message along the lines of “Thank you for
calling OurCompany. Press 1 for sales, 2 for support, 3 for
accounting, 9 for a company directory, or # to hangup.” Each menu
option is, in fact, an extension and could either dial someone's real
extension, or could send someone to another menu for example.

ý7þCÿHþ ý��������	��

�������	���������
Extensions can also match patterns, instead of being single digits.
Patterns to be pattern matched must start with the underscore
character (“_”) and may use any of the following special characters:

X – Any digit from 0-9
N – Any digit from 2-9
[14-6] – Any a 1,4, 5, or 6
. – Matches anything

Consider the following context for example:

routing

Extension Description

_61XX Dallas Office

_62XX Huntsville Office

_63XX Dallas Office

_7[1-3]XX San Jose Office

_7[04-9]XX Los Angeles Office

This context (called “routing”) splits calls according to their
extension to be sent to various servers. In this example, it is assumed
all extensions are four digits long (Asterisk has no such requirement,
of course, nor is there a requirement that all extensions be the same
length. Anyway, anything starting with 61, would be sent to the

Page 27

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

Dallas office, 62 would go to the Huntsville office and so on.
Anything starting with 71, 72, or 73 would go to San Jose.

���	������� �"!$#	%�&'#�()!�*�+-,�.'/0�"!

One extension context can include the contents of another. For
example, consider the following contexts:

longdistance

Extension Description

_91NXXNXXXXXX Long distance calls

include => “local”

local

Extension Description

_9NXXXXXX Local calls

include => “default”

Here, a context called “local” provides a single extension for dialing
local calls, and includes the “default” extension as well. Then, there
is a “longdistance” context which includes an extension for long
distance calling, and includes the “local” context. Phones which are
in the “longdistance” context would be able to make long distance
calling. Those in “local” could only make 7 digit local calls, and
those in the “default” context would not have outside line access at
all. Thus, using extension contexts, you can carefully control who
has access to toll services.

Page 28

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

1325476 8"9;:=<?>A@B>DCE>3@"8GF�6 8"HI@B>KJ�@?L

intention to let people use your local phone resources. Next we have
a couple of menu contexts, mainmenu and support. Both of these
present menus while including the default context so that direct
extensions may be dialed at any time. The mainmenu context

Page 29

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

includes both daytime and afterhours so that an incoming call rings to
an operator first during the day, and directly to an announcement
about company hours in the evening.

M3NPO�QSR�TVUPWGUXWZY\[^]�_VR`W"aZUcb"W"a

Unlike a traditional PBX, where extensions are associated with
phones, interfaces, menus, and so on, in Asterisk an extension is
defined as a list of applications (and arguments) to run. Each step of
an extension is referred to as a priority. Each priority is generally
executed in-order, although applications (especially “Dial” and
“Goto” may redirect a call to a different priority. When an extension
is dialed, each priority is executed until either the call is hungup, an
application returns -1, or the call is routed to a new extension. Each
step in an extension is typically notated as follows:

exten => <exten>,<priority>,<application>, [(<args>)]

d�e�fZe	gDh�iZjlknmporq'sct"u�jlk0v�u;o�q�i�wpx`y0t

Consider the following example:

exten => 100,1,Wait(1)
exten => 100,2,Answer
exten => 100,3,Playback(demo-congrats)
exten => 100,4,Hangup

This creates an extension with four steps. When a call enters this
extension, the first thing that happens is that Asterisk waits for one
second. Then, Asterisk answers the call (if it hasn't already been
answered). Third, it plays back an audio file called “demo-congrats”
and finally it hangs upon the caller. If the caller hungup at any point
while Asterisk was processing the extension, processing would be
terminated at that point.

Page 30

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

z�{�|Z{~}������A���-���p�����������

The most common sort of extension is that for dialing out another
interface. Calling out another interface is done with the “Dial”
application. While the “Dial” application has a very extensive list of
options (see Dial reference), this example uses it only in its most
basic form:

exten => 100,1,Dial(Zap/1,20)
exten => 100,2,Voicemail(u100)
exten => 100,102,Voicemail(b100)

This example illustrates one of the few exceptions to execution of an
extension being out of order. When this extension is entered, the first
thing Asterisk does is attempt to dial out the “Zap/1” interface for a
maximum of 20 seconds. If the interface is busy, it will jump to
priority n+101 if such a priority exists in this extension. In this case,
we have such a priority (102), which sends the caller to voice mailbox
100, preceeded with a “busy” announcement (something like “The
person at extension 100 is on the phone”). If there was simply no
answer (or if there was a busy and we didn't have a step 102), then
execution would continue at step 2, where the caller is put into voice
mailbox 100, but with an unavailable announcement (something like
“The person at extension 100 is currently unavailable”).

�����Z���������K���������$� �¢¡3£�£0¤"¥�¦�§

This example, often known as the “Anti-Ex Girlfriend” extension,
shows how Asterisk can route not only by called number, but by
calling number.

exten => 100/2565551212,1,Congestion
exten => 100,1,Dial(Zap/1,20)
exten => 100,2,Voicemail(u100)
exten => 100,102,Voicemail(b100)

Page 31

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

This example builds upon the previous by adding a special rule that if
the caller is 2565551212 (routing by Caller ID is indicated by placing
a “/” and the Caller ID number to match immediately following), they
are immediately presented with Congestion tone. Other callers
proceed normally. A more common example of routing by CallerID
is:

exten => 100/,1,Zapateller
exten => 100,1,Wait(0)
exten => 100,2,Dial(Zap/1)

In this example, if a call is received with no Caller ID, then the
Zapateller application is run (which plays the familiar “special
information tone” which you hear when you call a number that is not
in service, often times causing autodialers to disconnect). If Caller ID
is provided, then “Wait” is executed for 0 seconds (in otherwords,
“do nothing”). In either case, the Zap/1 channel is then rung
indefinitely (i.e. No timeout).

¨�©�ªZ©«¨�¬�­�®�¯3­�®�¯�°²±�³"®�´Aµ¶­�® ·I´Z¸r¹�´"®�º'´

Often it is desired that a given extension first ring one phone, and
then if there is no answer, ring another phone (or set of phones).
Consider this “Operator” example:

exten => 0,1,Dial(Zap/1,15)
exten => 0,2,Dial(Zap/1&Zap/2&Zap/3,15)
exten => 0,3,Playback(companymailbox)
exten => 0,4,Voicemail(100)
exten => 0,5,Hangup

In this example, when a caller would dial “0” for the operator, we
first trying ringing the interface Zap/1 (which is the phone that the
receptionist uses for example). If that interface is busy, or there is no
answer after 15 seconds, we try ringing a group of phones (including

Page 32

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

the receptionist's phone again) for another 15 seconds. If there is still
no answer (or if everyone is busy) then it will playback a message
announcing that no one is available, and to please leave a message in
the company mailbox. Finally the caller is dumped into voice
mailbox 100, without having any additional announcement played.

»�¼�½Z¼�¾�¿�ÀZÁlÂnÃÅÄÇÆrÂ0ÃKÈÊÉDÈ�ËÍÌ

A voice menu is typically implemented as its own extension context.

[sales]
exten => s,1,Background(welcome-sales)
exten => 1,1,Goto(default,100,1)
exten => 2,1,Goto(default,101,1)

[mainmenu]
exten => s,1,Background(welcome-mainmenu)
exten => 1,1,Goto(sales,s,1)
exten => 2,1,Dial,Zap/2
exten => 9,1,Directory(default)
exten => 0,1,Dial,Zap/3

An announcement is usually played on the “s” extension, upon
entering the menu. Then, the “Background” application plays a
prompt, while waiting for the user to enter an extension. The above
example presents two menus, one called “mainmenu” and one called
“sales.” When a caller entered the “mainmenu” context, they would
hear some sort of announcement (like “Press 1 for sales, 2 for
support, 9 for a directory, or 0 for an operator”). Upon entering a
“1”, the caller would be transferred to the “sales” menu, which would
in turn present other options. Dialing 2 would ring Zap/2, 0 would
ring Zap/3, and 9 would present the user with a company directory.

Î�Ï�ÐZÏ�Ñ�ÒÔÓlÕ�Ö�×ÙØ�ÚrÛVÕ�ÚrÜ`Ý0ÞAÓ

Asterisk can make use of global and channel specific variables for
arguments to applications. Variables are expressed in the dialplan
using ${foo} where “foo” is the name of the variable. A variable

Page 33

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

may be any alphanumeric string beginning with a letter, but there are
some variables whose names have special meanings. Specifically:

${CONTEXT} – The current context
${EXTEN} – The current extension
${EXTEN:x} – The current extension with x leading

digits dropped
${PRIORITY} – The current priority
${CALLERID} – The current Caller ID (name and number)
${CALLERIDNUM} – The current Caller ID number
${CALLERIDNAME} – The current Caller ID name
${RDNIS} – The current redirecting DNIS

Global variables may be specified in the [globals] section of the
dialplan. Consider the following example:

[globals]
MARK => Zap/1
GREG => Zap/2&SIP/pingtel
WIL => Zap/3
JUDY => Zap/4

[mainmenu]
exten => 1,1,Dial(${GREG}&${MARK})
exten => 2,1,Dial(${WIL}&${JUDY})
exten => 3,1,Dial(${JUDY}&${MARK})

By organizing the dialplan in this fashion, it is easy to change the
physical interfaces for any particular user and have all references to
them in the dialplan update instantly as well.

ß�à�áZàãâ�ä)å�æ�ç-è�éAê�å�ë�ìEí�åKîcï�ðKîVñ

One context can include zero or more other contexts, optionally with
a date/time limitation. Contexts are included in the order they are
listed. The format for include is:

Page 34

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

include => <context>[|<hours>|<weekdays>|<monthdays>|<months>]

Where <context> is the context to be include, <hours> are the hours
in which this include is considered valid (in the form of a range, in
military time, e.g. 9:00-17:00), <weekdays> are the days of the week
considered valid (e.g. mon-fri), <monthdays> are the days of the
month considered valid (e..g 22-25), and <months> are the months
considered valid. Consider the following example:

[salespeople]
exten => 1000,1,Dial(Zap/1)
exten => 1000,2,Voicemail(u1000)
exten => 1001,1,Dial(Zap/2)
exten => 1001,2,Voicemail(u1001)

[techpeople]
exten => 2000,1,Dial(SIP/2000)
exten => 2000,2,Voicemail(u2000)
exten => 2001,1,Dial(SIP/2001
exten => 2001,2,Voicemail(u2001)

[default]
include => salespeople
include => techpeople

In this example, the default context simply includes two other
contexts, thus making the contexts smaller and easier to track
someone down in.

ò�ó�ôZó~õ�öÇ÷�øKù�ú�û�ü$ýÿþ�ú����Kù�ù�ú�û�ü����	�Zü�

Including contexts can be used to implement daytime and nighttime
modes (and even holiday modes) by taking advantage of the ability to
make includes based upon times and dates. Consider the following
example:

Page 35

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

[newyears]
exten => s,1,Playback(happy-new-years)

[daytime]
exten => s,1,Dial(Zap/1,20)

[nighttime]
exten => s,1,Playback(after-hours-msg)

[default]
include => newyears||||1|jan
include => daytime|9:00-17:00|mon-fri
include => nighttime

In this example, the normal mode of operations is the nighttime
mode.

��
���
����������������� �!#"�$�%&"��('

Outbound dialing can be done either by directly connecting a short
extension (e.g. “9”) with an outbound line, or by establishing full
length extensions for numbers to be dialed. Consider the following
example:

[directdial]
ignorepat => 9
exten => 9,1,Dial(Zap/g2/)
exten => 9,2,Congestion

[international]
ignorepat => 9
exten => _9011.,1,Dial(Zap/g2/${EXTEN:1})
exten => _9011.,2,Congestion
include => longdistance

[longdistance]
ignorepat => 9
exten => _91NXXNXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Congestion
include => local

Page 36

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

[local]
ignorepat => 9
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _9NXXXXXX,2,Congestion
include => default

This example creates 4 separate contexts with various levels of access
to the phone network. First, it is assumed that one wants “9” to be the
number for connecting to an outside line. The ignorepat lines instruct
Asterisk's channel drivers not to take away dialtone when that pattern
is dialed, so that even after the caller dials 9, they still have a dialtone.
The local context is able to dial only 7 digit numbers, in addition to
anything in the default context. The calls are sent out using any
channel in “group 2” of the Zaptel driver, after stripping the “9” off.
The longdistance context is permitted to dial any 1+ number as well
as anything in the local context. The international context gives the
caller the ability to connect to any number starting with 011+, in
addition to anything in the longdistance context. The directdial
context connects a user directly to a trunk when the caller dials 9.

)�*�+�*-,/.�0�1�2&35476(8:9<;=9?>�@	A/2�@(BC1�@�D�E(FHG

One of Asterisk's most useful cost-saving features is the ability to
build simple Least Cost Routing (LCR) tables, including with
failover. Consider the following optimized dialplan:

[tolllongdistance]
exten => _91NXXNXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Congestion

[hsvlongdistance]
exten => _91256NXXXXXX,1,Dial(IAX/hsv/${EXTEN})
exten => _91256NXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91256NXXXXXX,3,Congestion

[longdistance]
include => hsvlongdistance
include => tolllongdistance

Page 37

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

include => local

In this example, the long distance context is setup to attempt to use a
remote VoIP host called hsv (presumably in Huntsville) to dial calls
with a 256 area code. Failing that, it will use the TDM group 2
interface (presumably a toll call) to dial (in case the host is
unavailable or unreachable for example).

I�J�K�J-L�L�MONQP�R(SUT�V	W7XZY�N

While the Asterisk extension logic is very flexible, it can also be very
verbose when creating many extensions which are very similar. In
order to ease this task, you can take advantage of macros which
simplify dialplans and make it easier to modify flows on a large scale.
Macros are implemented by creating an extension context whose
name begings with “macro-”, followed by the name of the macro.
Execution begins at the “s” extension and ends as soon as the
extension drops to a location that is no longer within the macro.
Macros define some useful local variables, specifically:

${MACRO_EXTEN} – The extension calling the macro
${MACRO_CONTEXT} – The extension context calling the

macro
${MACRO_PRIORITY} – The active priority when the macro

was called
${MACRO_OFFSET} – If set, causes the macro to attempt to

return to n + ${MACRO_OFFSET}
${ARGn} – The nth argument passed to the macro.

Page 38

The Asterisk Handbook Chapter 4: The Asterisk Dialplan

Consider the following example:

[macro-oneline]
;
; Standard one-line phone.
;
; ${ARG1} – Device to use
;
exten => s,1,Dial(${ARG1},20)
exten => s,2,Voicemail(u${MACRO_EXTEN})
exten => s,3,Hangup
exten => s,102,Voicemail(b${MACRO_EXTEN})
exten => s,103,Hangup

[macro-twoline]
;
; Standard two-line phone.
;
; ${ARG1} – First phone
; ${ARG2} – Second phone
;
exten => s,1,Dial(${ARG1},20)
exten => s,2,Voicemail(u${MACRO_EXTEN})
exten => s,102,Dial(${ARG2},20)
exten => s,103,Voicemail(b${MACRO_EXTEN})

[default]
exten => 1000,1,Macro(oneline,Zap/1)
exten => 1001,1,Macro(oneline,SIP/1001)
exten => 1002,1,Macro(twoline,Zap/3,Zap/4)

After doing the complex work of defining the oneline macro for a
single line phone and the twoline macro for a two-line phone,
implementing the default context becomes extremely easy, and each
extension requires only a single line instead of several similar lines.

Page 39

The Asterisk Handbook Chapter 5: Configuration Files

[U\^]`_badc#egfih [�jlkbmonqpsrteu]vaonwjlkyxzn|{wc=}

~7�Z���q���-���:���������Z�:�������#�:���|�������w�Z�(�

ost of Asterisk's flexibility is controlled through
configuration files located in the /etc/asterisk directory.
Its configuration syntax was designed to be easily

parseable both by software (like configuration GUI interfaces) and by
humans (like, presumably, you). The format of Asterisk config files
is , ironically,most similar to the win.ini format back in the days of
Microsoft® Windows 3.1. The file is a flat ASCII formatted file
divided into sections, which are titled with a section name in square
brackets, followed by keyword value pairs separated by the equals
sign, or equals greater-than. Semicolon is the comment character
(since '#' can be useful, especially in extensions). Blank lines are
ignored. Here is an example configuration file:

M

;
; The first non-comment line in a config file
; must be a section title
;
[section1]
keyword = value ; Variable assignment

[section2]
keyword = value
object => value ; Object declaration

Asterisk's configuration parser interprets “=” and “=>” identically,
and the syntax is used solely for the benefit of making more obvious
to a person reading the file which pairs represent options, and which
pairs represent the creation of some sort of object.

�7�����# :¡�¢�£�¤=¥�¦¨§:©Z£� :¡�ª:£w«Z¬®­¯¦¨§�°�°�§±¦¨²

Although all of Asterisk's configuration files share the same syntax,
there are at least three distinct grammars that are typically used.

Page 40

The Asterisk Handbook Chapter 5: Configuration Files

³�´¶µ�´-·¹¸»º�¼C½¿¾5À®ÁÃÂ�Ä�Å�½7ÆÈÇ�À�´�É�´/Ê7Ä±º5ËQÀ�¼ÃÌ±ºÍ¾�´¶Ë�Ä:Î�Ï

The “Simple Groups” format is (not surprisingly) the simplest format
and is used by configuration files in which objects are declared with
all options on the same line. Examples include extensions.conf,
meetme.conf, voicemail.conf and others. Consider this example:

[mysection]
object1 => option1a,option2a,option3a
object2 => option1b,option2b,option3b

In this example, “object1” is created with options “option1a,”
“option2a” and “option3a” while “object2” is created with
“option1b,” “option2b” and “option3b.”
Individual Entities
The “Individual Entities” configuration syntax is used by
configuration files in which objects are declared with many options,
and where those options are rarely shared with other objects. In this
format, a section is associated with each object (there is sometimes a
general or similar section for any global configuration options). For
example:

[general]
globaloption1=globalvalue1
globaloption2=globalvalue2

[object1]
option1=value1a
option2=value2a

[object2]
option1=value1b
option2=value2b

In this example, a general section defines two global variables
“globaloption1” and “globaloption2” with values “globalvalue1” and

Page 41

The Asterisk Handbook Chapter 5: Configuration Files

“globalvalue2” respectively. Then, two objects are created (“object1”
and “object2”) with two options each.

Ð�Ñ¶Ò�Ñ¶ÒÔÓÖÕ�×�Ø:Ù�ÚÜÛZØ�Ý®ÞÃß/Û?Ú5à�ÕÃÞÃáãâäØ	åæÛ�ç-Ø�Ñ�è�Ñ�éëê�ß7ê�Û�ê�Ñ¶å�à:Õ�ìZí

The “Inherited Option Object” format is used by zapata.conf,
phone.conf, mgcp.conf and other interfaces in which there are many
options, but where most interfaces or objects share the same value for
options as others. In this class of configuration file, typically there
are one more sections which contain declarations of one or more
channels (or objects). The options for the object are specified above
the declaration of the object and may be changed afterwords for
another object declaration. This is probably one of the more unusual
concepts to understand, but once you do, you will almost certainly
find it extremely easy to use. Consider this very basic example:

[mysection]
option1 = foo
option2 = bar
object => 1
option1 = baz
object => 2

The first two lines set the value of options “option1” and “option2” to
“foo” and “bar” respectively. When object “1” is instantiated, it is
created with its option1 being “foo” and its option2 being “bar.”
After declaring object “1”, we change the value of option1 to “baz”
and create a new object “2.” Now, object “2” is created with its
option1 being “baz” and its option2 remaining “bar” just as with
object “1.” Again, changing the value of “option1” after the
declaration of object “1” does not affect its value in object 1, only in
object 2.

Page 42

The Asterisk Handbook Chapter 5: Configuration Files

î�ï¶ð�ï�ñ�ò#ó:ôCõ<ö5÷(øÔùiú�û|üÜûwýÿþ����ä÷�� û���÷�ï	��ï<ü�
�ø�ï���ó:ú�
��

The “Complex Entity Object” format is used by iax.conf, sip.conf,
and other interfaces in which there are numerous entities, with many
options, which typically do not share a great deal of common settings.
Each entity receives its own context (sometimes there is a reserved
context such as “general” for global settings). Options are then
specified in the context declaration. Consider:

[myentity1]
option1=value1
option2=value2

[myentity2]
option1=value3
option2=value4

The entity myentity1 has values value1 and value2 for options
option1 and option2 respectively. Entity myentity2 has values
value3and value4 for options option1 and option2 respectively.

��������������� �"!$#%�'&(�$)+*,�.-���/

This section defines, in detail, the configuration files for various
Asterisk channel drivers.

0�132�1,46587:9;7;<,7:1>=8?:@�A

B:CED�F�GIH;J	H

The zapata.conf file contains parameters relating to TDM channels
provided by the Zaptel interface layer. Channels must be defined in
this file before they can be used by Asterisk. In addition, a number of
features relating to Asterisk's operation of the channels may be
configured here.

Page 43

The Asterisk Handbook Chapter 5: Configuration Files

K6LML(NIO"P�QIRSQIO�T

The zapata.conf file consists of keyword and value pairs. Keywords
set parameters for the operation of channels. They may be boolean
(yes/no) or contain values specific to the keyword. Most keywords set
parameters for the operation of channels. Values remain in effect for
all following channel definitions until they are overidden.

UWV�X�Y[Z�\(].^

These keywords are available in zapata.conf.

context: Defines the initial context for the channel. This will be the
context available to the channel upon the initiation of a call. Note that
contexts are an important part of maintaining site security. The initial
context will govern the availability of extensions to a given channel.
If an extension is placed in a different context from the initial context,
that extension is unavailable to the caller.

context = default

Important Note: Careless
use of contexts can allow
open access to billable

services and internal
features.

!
channel: Define a channel or range of channels. Each channel
definition will inherit all options stated ahead of it in the file.
Channels maybe specified individually, separated by commas, or as a
range separated by a hyphen.

channel => 16
channel => 2,3
channel => 1-8

Page 44

The Asterisk Handbook Chapter 5: Configuration Files

group: Allows a number of channels to be treated as one for the
purpose of dialing. For dialing out, the channels will be called on a
first available basis. For the purpose of ringing stations, all channels
in the group will ring at once. Multiple group memberships may be
specified with commas, and to signify no group membership, the
portion after the equals sign may be omitted

group = 1
group = 2,3
group =

switchtype: Sets the type of signalling used for a PRI line.
Acceptable values are:

national: National ISDN
dms100: Nortel DMS100
4ess: AT&T 4ESS
5ess: Lucent 5ESS
euroisdn: EuroISDN

switchtype = national

pri_dialplan: Sets an option required for some (rare) switches that
require a dialplan parameter to be passed. This option is ignored by
most PRI switches. It may be necessary on a few pieces of hardware.
Valid options are: unknown, local, private, national, and
international.

pri_dialplan = national

This option can almost always be left unset.

Page 45

The Asterisk Handbook Chapter 5: Configuration Files

signalling: Sets the signaling type for following channel definitions.
These parameters should match the channels as defined in
/etc/zaptel.conf. Correct choices are based on the hardware available.
Asterisk will fail to start if a channel signaling definition is incorrect
or unworkable, if the statements do not match zaptel.conf, or if the
device is not present or properly configured.
Legal values for signalling are:

fxo_ks: FXO Kewlstart signalling. Used to signal an FXS device
within the system, which would normally drive a handset or other
station device. Kewlstart is Loopstart with Disconnect Supervision.
fxs_ks: The opposite side of fxo_ks. To signal an internal (or T1
connected) FXO device.
fxo_gs: Use FXO groundstart signalling.
fxs_gs: Use FXS groundstart signalling.
fxo_ls: Use FXO loopstart signalling
fxs_ls: Use FXS loopstart signalling
pri_cpe: Use PRI signalling, customer equipment side. Used when
terminating a PRI line into Asterisk channels.
pri_net: Use PRI signalling, network side.
em: Use E&M signalling
em_w: Use E&M wink signalling
featd: Feature Group D, Adtran compatible. For use with the Atlas
and similar equipment made by Adtran (DTMF version).
featdmf: Standard Feature Group D (MF version).
featb: Feature Group B

Important Note - Analog
phone signalling can be a
source of some confusion.

FXS channels are signalled
with FXO signalling, and vice
versa. Asterisk 'talks' to
internal devices as the
opposite side. An FXO
interface card is signalled

!

Page 46

The Asterisk Handbook Chapter 5: Configuration Files

with FXS signalling by
Asterisk, and should be
configured as such.

signalling => fxs_ks
signalling => featd

Analog Call Progress
These items are used to attempt to emulate having a

smarter line (like a PRI) that gives us call progress information, when
using analog channels that don't pass us any digital information.

busydetect: Attempt to detect a standard busy signal on analog (FXS
and FXO) or certain T1 signalling types (E&M, Wink, Feature Group
D). This option can be used to determine when to hang up a call or to
have Asterisk handle the busy condition internally. Takes 'yes' or 'no'.

callprogress: Used in combination with a variety of phone lines,
enabling call progress will cause Asterisk to attempt to monitor the
state of the call, and detect ringing, busy, and answered line. Note
that this is not explicitly supported by the line technology, and is
subject to errors, especially false answer detection. This only works
with US phone tones at the time of writing. Takes yes or no.

busydetect = yes
callprogress = yes

Multi-link PPP Options (for PRI, requires network support):
These options are used to set adjust multi-link PPP

options on PRI lines that support it. Multi-link PPP is a technology
that allows channels on a PRI to be dynamically allocated between

Page 47

The Asterisk Handbook Chapter 5: Configuration Files

voice and data. Asterisk can take voice channels allocated to it, dial a
Remote Access Server, and dump the channels into a special
extension that delivers the channel to the zaptel data layer. See
ZapRAS.

minunused: The minimum number of unused channels available. If
there are fewer channels available, Asterisk will not attempt to bundle
any channels and give them to the data connection. Takes an integer.

minidle: The minimum number of idle channels to bundle for the data
link. Asterisk will keep this number of channels open for data, rather
than taking them back for voice channels when needed. Takes an
integer.

idledial: The number to dial as the idle number. This is typically the
number to dial a Remote Access Server (RAS). Channels being idled
for data will be sent to this extension. Takes an integer that does not
conflict with any other extension in the dialplan, and has been
defined as an idleext.

idleext: The extension to use as the idle extension. Takes a value in
the form of 'exten@context'. Typically, the extension would be an
extension to run the application ZapRAS.

minunused => 2
minidle => 1
idleext => 6999@idle
idledial => 6999

Timing Parameters:
These keywords are used only with (non-PRI) T1 lines.

All values are in milliseconds. These do not need to be set in most
configurations, as the defaults work with most hardware. It has been
noted that the common Adtran Atlas uses long winks of about 300

Page 48

The Asterisk Handbook Chapter 5: Configuration Files

milliseconds, and channels from them should be configured
accordingly.

prewink: Sets the pre-wink timing.
preflash: Sets the pre-flash timing.
wink: Sets the wink timing.
rxwink: Sets the receive wink timing.
rxflash: Sets the receive flash timing.
flash: Sets the flash timing.
start: Sets the start timing.
debounce: Sets the debounce timing.

rxwink => 300
prewink => 20

Caller ID Options:
These keywords set various Caller ID options, including turning
certain features off and setting the Caller ID string for channels. Most
Caller ID features default to on.

The following three options are boolean (yes/no).

usecallerid: Disables or enables Caller ID transmission for the
following channels.

hidecallerid: Sets whether to hide outgoing Caller ID. Defaults to no.

calleridcallwaiting: Sets whether to receive Caller ID during call
waiting indication.

usecallerid => yes
hidecallerid => no

Page 49

The Asterisk Handbook Chapter 5: Configuration Files

callerid: Sets the caller ID string for a given channel. This keyword
takes a properly formatted string containing the name and phone
number to be supplied as caller ID. Caller can be set to asreceived on
trunk interfaces to pass the received Caller ID forward.

Important Note: Caller ID
can only be transmitted to
the public phone network

with supported hardware, such
as a PRI. It is not possible
to set external caller ID on
analog lines. On supported
systems, the phone company
only receives the number, and
supplies the name from their
records.

!

callerid = "Mark Spencer" <256 428-6000>
callerid =
callerid = asreceived

Call Feature Options
These options enable or disable the availability of

advanced call features offered by Asterisk such as three-way calling
and call forwarding on FXS (FXO signalled) interfaces. All of these
options are boolean (yes/no).

threewaycalling: Sets whether to allow three-way calling from the
channel.

cancallforward: Disables or enables call forwarding. Call forwarding
is activated with *72 and deactivated with *73.

Page 50

The Asterisk Handbook Chapter 5: Configuration Files

transfer: Disables or enables flash-hook call transferring. In order
for this option to work, threewaycalling must also be set to yes.

immediate: When Asterisk is in immediate mode, instead of
providing dialtone and reading digits, it immediately jumps into the
“s” extension. This is often referred to as batphone mode.

adsi: Explicitly enables or disables support for ADSI. The ADSI
specification is system similar to Caller ID to pass encoded
information to an analog handset. It allows the creation of interactive
visual menus on a multiline display, offering access to services such
as voicemail through a text interface.

threewaycalling = yes
transfer = yes
immediate = no
adsi = yes
cancallforward = yes

Audio Quality Tuning Options:
These options adjust certain parameters of Asterisk that affect the
audio quality of Zapata channels.

echocancel: Disable or enable echo cancellation. In almost every
configuration it is recommended that this be left on (or left unstated,
as the default is always on.) Takes 'yes', 'no', or a number of taps.
Valid values of taps are 16, 32, 64, 128, or 256.

echocancelwhenbridged:? Enables or disables echo cancellation
during a bridged TDM call. In principle, TDM bridged calls should
not require echo cancellation, but often times audio performance is
improved with this option enabled. Should be set on or left unset.
Takes 'yes' or 'no'.

Page 51

The Asterisk Handbook Chapter 5: Configuration Files

rxgain: Adjusts receive gain. This can be used to raise or lower the
incoming volume to compensate for hardware differences. Takes a
percentage of capacity, from -100% to +100%

txgain: Adjusts transmit. This can be used to raise or lower the
outgoing volume to compensate for hardware differences. Takes the
same argument as rxgain.

echocancel = yes
echocancelwhenbridged = no
rxgain = 20%

Call Logging Options:
These options change the way calls are recorded in the

call detail records generated by Asterisk.

amaflags: Sets the AMA flags, affecting the categorization of entries
in the call detail records. Accepts these values:

billing: Mark the entry for billing
documentation: Mark the entry for documentation.
omit: Do not record calls.
default: Sets the system default.

accountcode: Sets the account code for calls placed on the channel.
The account code may be any alphanumeric string.

accountcode = spencer145
amaflags = billing

Miscellaneous Options
There are a few other keywords that don't fit neatly into

the previous categories.

Page 52

The Asterisk Handbook Chapter 5: Configuration Files

mailbox: This keyword can be set to allow Asterisk to offer an
audible (and visual, if supported by the handset) message waiting
indication when the station handset is picked up. When the mailbox
keyword is defined and an unheard message exists in the associated
Inbox, Asterisk will produce a stutter dialtone for one seconds after
the phone is picked up. On supported hardware, the message waiting
light will be activated. Takes as an argument a mailbox number
(which must be defined in voicemail.conf).

language: Turn on internationalization and set the language. This
feature will set all system messages to a given language. Though the
feature is prepared, English is the only language that has been
completely recorded for the default Asterisk installation.

stripmsd: Strip the 'Most Significant Digit,' the first digit or digits
from all calls outbound on the given trunk channels. Takes as an
argument the number of digits to strip. This option is deprecated, see
the application 'StripMSD' or use ${EXTEN:x} for this functionality.

Complete File Example:
This is a complete example of a functional zapata.conf file. It is based
on an 8 FXO by 16 FXS T1 channel bank.

[channels]

;set the FXO's in a group so we can dial out of
;them
;on a first-available basis

group = 1

;set the correct context for our dialout lines

context = pstn

;set the signalling (remember that we signal fxs
;channels
;with fxo, and vice versa)

Page 53

The Asterisk Handbook Chapter 5: Configuration Files

signalling = fxs_ls

;set the AMA flags for clarity in the logs

amaflags = documentation

;define the channels that will be covered by the
;previous declarations (in this case all of our
;FXO's)

channel => 1-8

;reset the group, so we don't send outgoing
calls to
;the internal lines

group = 2

;change the context, so we can allow greater
;access to
;services to internal users

context = internal

;set the signalling on the station lines (fxs)
signalling = fxo_ks

;set a mailbox number on the following channels
mailbox = 1234

;set the callerid string (though since we don't
;have a PRI
;it's only seen inside, not on the PSTN.)

callerid = "Dave Schools" <256 555 1234>

;and state the channel this will apply to

channel => 9

;continue and state more channels with mailbox
;indication
;and caller id strings

mailbox = 1235
callerid = "Michael Houser" <256 555 1235>
channel => 10

Page 54

The Asterisk Handbook Chapter 5: Configuration Files

mailbox = 1236
callerid = "John Bell" <256 555 1236>
channel => 11

mailbox = 1237
callerid = "Grace Slick" <256 555 1237>
channel => 12

;remember the downward inheritance of options.
;if the next channel doesn't have a voicemail
;box, we need
;to set an empty string, or he'll know whenever
;Grace has a message. Also the callerid should
;be nulled as well

mailbox =
callerid =

;define a bunch of channels with no other
options

channel => 13-22

;Put this phone in a different context, so we
;can give it
; a different initial dialplan...perhaps a lobby
;phone
;with public access

context = lobby
callerid = "Lobby" <5000>
channel => 23
;and turn the callerid off

callerid =

;we can create a 'hotline' phone by placing a
;phone in a special context
;and setting it to answer immediately. In
;extensions.conf we can route
;the phone to an IVR, direct to security, or
;make it call Steak-Out

context => hotline
immediate => yes
channel => 24

Page 55

The Asterisk Handbook Chapter 5: Configuration Files

_�`3a�`�bdc8e>f�`>g8h:i8j

k:lEm�n�oIp;q	p

The sip.conf file contains parameters relating to the configuration of
Session Initiation Protocol (SIP) access to the Asterisk server. Clients
must be configured in this file before they can place or receive calls
using the Asterisk server.

r6sMs(tIu"v�wIxSwIu�y

The sip.conf file is read from the top down. The first section is for
general server options, such as the IP address and port number to
bind to. The following sections define client parameters such as the
username, password, and default IP address for unregistered clients.
Sections are delineated by a name in brackets. The first section is
called general (which cannot be used as a client name.) The following
sections begin with the client name in brackets, followed by the client
options.

zW{�|�}[~��(�.�

The following keywords are defined in sip.conf.

General Section Keywords:
These settings are for the [general] section of sip.conf and adjust
global settings for the SIP stack.

port: The port Asterisk should listen for incoming SIP connections.
The default is 5060, in keeping with standards. Takes as an argument
a port number (which must not be in use by any other service.)

bindaddr: The IP address Asterisk should listen on for incoming SIP
connections. If the machine has multiple real or aliased IP addresses,
this option can be used to select which IP addresses Asterisk listens
on. The default behavior is to listen on all available interfaces and

Page 56

The Asterisk Handbook Chapter 5: Configuration Files

aliases. Takes as it's argument an IP address (which must be an
interface available on the system.)

context: Sets a default context all further clients are placed in, unless
overridden within their entity definition.

allow: Explicitly allows a SIP codec. Note that codecs are preferred
in the order they are allowed.

disallow: Explicitly disallows a SIP codec from being used.

tos: Configures type of service (TOS) used for SIP and SIP+RTP
transmissions. Acceptable values are: lowdelay, throughput,
reliability, and mincost. Also, an integer (0-255) may be specified.

maxexpirey: Maximum permitted length of a registration request in
seconds.

defaultexpirey: Default length of a registration request in seconds.

register: Registers this Asterisk instance with another host. Takes a
SIP address (without the sip:) optionally followed by a forward slash
('/') and an extension to use for contact.

[general]
port = 5060
bindaddr = 192.168.0.1
context = default
disallow = g729
allow = ulaw
allow = gsm
maxexpirey = 180
defaultexpirey = 160
register => 1234@mysipprovider.com/1234
register => 2345@myothersipprovider.com

Page 57

The Asterisk Handbook Chapter 5: Configuration Files

Entity options:
After the general section are listed each entity in the SIP
configuration. Entities are divided into three categories:

peer: A SIP entity to which Asterisk sends calls (a SIP provider for
example)
user: A SIP entity which places calls through this Asterisk (A phone
which can place calls only)
friend: An entity which is both a user and a peer. This make sense for
most desk handsets and other devices.

type: The type option sets the connection class for the client. Options
are peer, user, and friend.

host: Sets the IP address or resolvable host name of the device. This
can alternately be set to 'dynamic' in which case the host is expected
to come from any IP address. This is the most common option, and
normally necessary within a DHCP network.

defaultip: This option can be used when the host keyword is set to
dynamic. When set, the Asterisk server will attempt to send calls to
this IP address when a call is received for a SIP client that has not yet
registered with the server.

username: This option sets the username the Asterisk server attempts
to connect when a call is received. Used when for some reason the
value is not the same as the username the client registered.

canreinvite: This option is used to tell the server to never issue a
reinvite to the client. This is used to interoperate with some (buggy)
hardware that crashes if we reinvite, such as the common Cisco ATA
186.

context: When defined within a client definition, this keyword sets
the default context for this client only.

Page 58

The Asterisk Handbook Chapter 5: Configuration Files

dtmfmode: Selects whether DTMF digits should be sent in-band or
out of band. Valid values are:

inband: DTMF is send as audio in-band, and is detected in-band.
rfc2833: DTMF is sent out-of-band using RFC2833 (default)
info: DTMF is sent and received out of band using INFO messages
(very rarely used)

mailbox: One or more mailboxes may be listed (separated by
commas) for sending Message Waiting Indicator (MWI) messages to
a given SIP peer.

qualify: A maximum time in milliseconds for a peer to respond. This
causes Asterisk to poll the device periodically and consider it down if
it takes longer than this number of milliseconds to respond.

secret: A shared secret used for authenticating registrations for peers
and for users making calls.

nat: Causes Asterisk to interpret a peer or user as a potentially
network address translated host. This is useful when peers are behind
firewalls.

Note that enabling the nat
functionality causes
Asterisk to violate the

RFC specified ways of dealing
with Contact: and SDP portions
of calls, in order to try to
work with NATed hosts. At the
time of this writing, nat=yes
is incompatible with Pingtel
phones.

!

Page 59

The Asterisk Handbook Chapter 5: Configuration Files

Complete SIP File Example:
The following is a complete example of a workable sip.conf file.

[general]
port=5060
bindaddr=192.168.0.10
context=default
register => 1234@mysipprovider.com

[snom]
type=friend
secret=snom100
host=dynamic
defaultip=192.168.0.15
mailbox=2345,1234

[cisco]
type=friend
secret=mysecret
host=192.168.0.20
canreinvite=no
mailbox=1234
context=trusted

���3���3���������>�8�:�8�

�:�E�����I�;�	�

This file is used to configure clients connecting via the Inter-Asterisk
eXchange protocol. IAX is primarily used for passing calls between
Asterisk servers. Frequently Multiple Asterisk servers are configured
to intercommunicate with each other using this file. The iax.conf file
is shared by both IAX version 1 and version 2 implementations.

�6�M�(�I�"���I�S�I���

The iax.conf file begins with a general section, which sets global
server options. Within the general section, we can also configure the

Page 60

The Asterisk Handbook Chapter 5: Configuration Files

Asterisk server to register as a client with a remote server, for access
to the dialplan of another Asterisk system.

Following the general section, clients are defined, one per section.
Sections are delineated by their name in brackets.

�W�����[�¡(¢.£

The following keywords are used in iax.conf.

In the general section:
port: The port to listen on for incoming connections. The default is
port 5036. Takes as it's argument a port number (which must not be
in use by another service.)

bindaddr: If multiple IP addresses are available in the same system,
this option may be set to bind Asterisk to a single interface.

port = 5036
bindaddr = 0.0.0.0

amaflags: Sets the AMA flags, affecting the categorization of entries
in the call detail records. This keyword may also be set on a per client
basis, within their client definition. Accepts these values:

billing: Mark the entry for billing
documentation: Mark the entry for documentation.
omit: Do not record calls.
default: Use the system default.

accountcode: Sets the default account code to log IAX calls to. This
keyword can also be used within a client definition to set the account
code for that client.

Page 61

The Asterisk Handbook Chapter 5: Configuration Files

accountcode = wmeadows
amaflags = documentation

bandwidth: This option is used to control which codecs are used
generally. Rather than allowing or disallowing specific codecs, this
option may be set to 'low' to automatically avoid some codecs that
don't work well in low bandwidth sitiuations. Takes an option of low
or high.

allow: Specifically allow a certain codec to be used. Takes a codec,
or all. Using all is the same as specifying bandwidth=high.

disallow: Specifically disallow a certain codec. See allow.

bandwidth=low
disallow=all
allow=gsm

jitterbuffer: Turn on or off the jitter buffer. The jitter buffer is used
to maximize audio quality by balancing latency against the number of
dropped packets. A number of keywords exist to fine tune the
jitterbuffer.

dropcount: Sets the maximum number of packets to be dropped in
order to reduce latency, per memory size.

maxjitterbuffer: Sets the maximum size of the jitterbuffer.

maxexcessjitterbuffer: Sets the the maximum excess jitter buffer,
which if exceeded, causes the jitter buffer to slowly shrink in order to
improve latency.

register: Register is used to tell the Asterisk server to register with
another Asterisk server. This is normally only needed if our local

Page 62

The Asterisk Handbook Chapter 5: Configuration Files

server has a dynamic IP address and needs to tell the other server
where to find it. The format of a register statement is:

register => username:secret@server

The ‘secret’ field is optional, if no secret has been specified on the
server being connected to. If RSA encryption is in use, specify the
key to send to the server with this format:

register => username:[key]@server

tos: Specify the type of service bits to set on IAX packets, which
may improve routing of the packets. Available values are:

lowdelay: minimize delay
throughput: maximize throughput
reliability: maximize reliability
mincost: use the lowest cost path
none: use no routing flags

tos = lowdelay

Options for Entities
Entity definitions begin with the entity name in brackets. The name
is followed by a number of keyword/value pairs applying to the entity
in which they are set.

The following keywords are available for users:

type: This sets the type of entity for the client. Valid types are:

Page 63

The Asterisk Handbook Chapter 5: Configuration Files

user: A user can place calls to or through the Asterisk server.
peer: A peer receives calls from the Asterisk server, but does not
place them
friend: A friend both sends and receives calls through the Asterisk
server. This makes the most sense for handsets or other station
devices. When in doubt use this type.

context: When used within a client definition, this keyword overrides
the default incoming context set in the general section for the user
only.

callerid: Sets the Caller ID string to be used for this entity. This
callerid string will be used internally, and sent to the PSTN if a PRI
line is used to route the call to the outside world. If left blank, the
Caller ID sent by the entity will be used instead

callerid => “Judy” <256 555-1234>

auth: Sets the authentication type. IAX supports three methods of
authentication. The first (and least secure) is plaintext. The
passwords (or secrets) are sent in clear text over the network. The
second is md5, which uses an md5 challenge response algorithm.
Both machines will have cleartext access to the passwords, but they
will be confirmed using an md5 hash while passing over the network.
The most secure option is to use RSA public/private key encryption
to store and transmit the secret. Public/private key pairs can be
generated using the included program astgenkey. The public key will
need to be manually tranfered to the server and stored in
/var/lib/asterisk/keys/name.pub. Server private keys are stored in the
same location as name.key.

Page 64

The Asterisk Handbook Chapter 5: Configuration Files

Important Note: In order
use RSA keys with
Asterisk, you will have to

‘init keys’ at the console
during startup. Asterisk will
prompt you to do so every time
it is launched.

!

inkeys: The public keys to use to decrypt authentication for an
incoming client request or registration.

outkey:The private key to encrypt outgoing authentication
communication for this client.

auth=md5
secret=password

auth=rsa
inkeys=theirkey
outkey=mykey

permit: Hosts to permit to connect as this user. This can be a single
host or a host/netmask pair.

deny: Hosts to deny for any incoming connection attempt as this user.
deny takes the same argument format as permit.

deny = 0.0.0.0/0.0.0.0
permit=192.168.0.1/255.255.255.0
permit=216.207.245.45

host: Sets the expected outgoing host for this client. Can be set to an
ip address or dynamic, which will allow incoming connections from
any host (that is not explicitly denied.)

Page 65

The Asterisk Handbook Chapter 5: Configuration Files

defaultip: The default IP address for an IAX client. This field is
consulted if Asterisk receives a call for an IAX client that is dynamic
and has not registered to let Asterisk know the current IP address.
Takes as it’s argument an IP address.

host=dynamic
defaultip=192.168.0.1

accountcode: When used within a client definition, sets the account
code for that client only. This is used by the call logging service.

qualify: Tells Asterisk whether to test whether the peer is alive before
attempting to connect the call. If set to yes Asterisk will periodically
contact the peer before forwarding any call information. The
argument specified is the maximum number of milliseconds that a
peer can take to respond before it is considered “unavailable.”

qualify=1000

mailbox: Provides a mailbox to associate with a given peer, so that
when it registers it can be notified of any pending messages waiting.

mailbox=1234
mailbox=1002,1003

trunk: Enables or disables trunking for a given user or peer. Trunk
mode is a more efficient method of operating IAX if there are
typically many calls running on the link. Trunk mode requires
having a Zaptel interface in the Asterisk server.

trunk=yes

Page 66

The Asterisk Handbook Chapter 5: Configuration Files

¤¦¥�§d¨�©«ª�¬,ª®­I¯°©«ª®±�²�³I§´¨�©«ª

[general]
;set up some general items
port=5036

accountcode=iaxcalls
amaflags=default

bandwidth=low
allow=gsm
disallow=lpc10

jitterbuffer=yes
dropcount=3
maxjitterbuffer=500
maxexcessjitterbuffer=100

register =>
asterisk1:opensecret@telco.digium.com

context=iax

;from here on it’s client definitions

[trustedhost]
host=192.168.0.50
trunk=yes
context=trusted

[authhost]
secret=foobar
host=dynamic
defaultip=68.62.178.239

[rsahost]
auth=rsa
inkeys=rsapublickey
host=dynamic
defaultip=216.207.245.55
accountcode=log1234
callerid=”Mark Spencer” <256 428 6000>

Page 67

The Asterisk Handbook Chapter 5: Configuration Files

µ�¶¸·º¹6»�»½¼3¾À¿�Á�ÂÀ¾�Ã�ÄÆÅÇÃ�Ä�È(¾«ÉËÊ�ÌÍÁ�ÂÀ¾�Ã�Ä:Î

This section details the configuration file syntax for various Asterisk
applications.

Ï�ÐÒÑÓÐ,ÔÖÕ;×.ØÚÙ�Û�Ü�Ý�ØßÞ>Ð>Ù8×:à8á

â:ãEä�å�æIç;è	ç

The voicemail.conf file configures system wide parameters for the
voicemail system, and stores mailbox information including mailbox
number to passcode mapping, box owner names, and e-mail addresses
for message received notification.

é6êMê(ëIì"í�îIïSîIì�ð

The voicemail.conf file is arranged in two sections. The first section,
general, contains system wide parameters such as the formats
messages are to be stored in and the address e-mail from the
voicemail system should appear to originate from. The second
section, default, contains the configurations for individual voicemail
boxes.

ñWò�ó�ô[õ�ö(÷.ø

The general section takes these keywords and options:

format: Format sets the file formats for saving voicemails. If
multiple formats are specified, all formats will be written, and the
best available format will be used for playback. The format listed last
is used for e-mailing voicemails, if that options is enabled. Available
formats are:

gsm : use raw gsm encoding. Best for VoIP.
wav: MS wav format, 16 bit linear
WAV: MS wav format, gsm encoded

Page 68

The Asterisk Handbook Chapter 5: Configuration Files

g723sf: G.723.1 simple frame (note that Asterisk cannot directly
encode , due to licensing issues. It can, however, store and transmit
file received from an external source, i.e. from a SIP phone with a
built in codec).

format=gsm|wav|WAV

In this example each received voicemail will be written in gsm, MS-
GSM, and linear wav formats.

format=gsm

This example will store voicemails in raw gsm format only.

serveremail: Serveremail sets the e-mail address that voicemail-
waiting e-mails should appear to originate from. This value will be
used in the 'From:' field of the e-mail. Available options are any
alphanumeric string, or any alphanumeric

Examples:

serveremail=asterisk

In this example the 'From:' field will be set to 'asterisk'. In most cases
the outgoing mail server will append the local hostname.

 serveremail=asterisk@myhost.com

This example will set the e-mail to . This will normally NOT be
rewritten by the outgoing mail server. This is useful if you want the

Page 69

The Asterisk Handbook Chapter 5: Configuration Files

e-mail to appear to come from a hostname other than the hostname of
the local machine.

append: Append set whether to append the voicemail sound file as an
attachment to the notification e-mail. Takes an argument of yes or
no.

append=yes

append=no

The default section takes as a keyword the mailbox number. The
keyword takes as parameters the passcode, owner name, and owner e-
mail address to send message waiting notification to.

1234 => 4321,John Doe,jdoe@misc.com

Important Note: The owner
name is used by the
'Directory' application to

find extensions based on names
provided by the caller.

!

maxmesssage: Sets the maximum length for a voicemail message in
seconds. This option can be useful for keeping people from leaving
too lengthy of messages.

maxgreet: Sets the maximum length in seconds of the greeting that a
user can record for their busy, unavailable, and name messages.

Page 70

The Asterisk Handbook Chapter 5: Configuration Files

ù¦ú�ûdü�ý«þ�ÿ,þ����°ý«þ������Iû´ü�ý«þ

This is a complete example of a working voicemail.conf file.

[general]
format=gsm|wav
serveremail=asterisk@mymachine.com
append=yes
maxgreet=30
maxmessage=90

[default]
1234 => 4321,John Doe,jdoe@mycompany.com

Page 71

